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Abstract. Salsa is an invariant checker for speci�cations in SAL (the
SCR Abstract Language). To establish a formula as an invariant with-
out any user guidance Salsa carries out an induction proof that uti-
lizes tightly integrated decision procedures, currently a combination of
BDD algorithms and a constraint solver for integer linear arithmetic, for
discharging the veri�cation conditions. The user interface of Salsa is de-
signed to mimic the interfaces of model checkers; i.e., given a formula and
a system description, Salsa either establishes the formula as an invariant
of the system (but returns no proof) or provides a counterexample. In
either case, the algorithm will terminate. Unlike model checkers, Salsa
returns a state pair as a counterexample and not an execution sequence.
Also, due to the incompleteness of induction, users must validate the
counterexamples. The use of induction enables Salsa to combat the state
explosion problem that plagues model checkers { it can handle speci�ca-
tions whose state spaces are too large for model checkers to analyze. Also,
unlike general purpose theorem provers, Salsa concentrates on a single
task and gains e�ciency by employing a set of optimized heuristics.

1 Introduction

Model checking[17] has emerged as an e�ective technique for the automated
analysis of descriptions of hardware and protocols. To analyze software system
descriptions, however, a direct application of model checking to a problem (i.e.,
without a prior reduction of its state space size by the application of abstraction)
rarely succeeds [9]. For such systems, theorem proving a�ords an interesting al-
ternative. Conventional theorem proving systems, however, are often too general
or too expensive to use in a practical setting because they require considerable
user sophistication, human e�ort, and system resources. Additionally, the coun-
terexample provided by a model checker when a check fails serves practitioners
as a valuable debugging aid. However, in contrast, conventional theorem provers
provide little or no diagnostic information (or worse, may not terminate) when
a theorem is not true.
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Salsa is an invariant checker for system descriptions written in a language
based on the tabular notation of SCR [24] called SAL (the SCR Abstract
Language). Given a logical formula and a system description in SAL, Salsa uses
induction to determine whether the formula is true in all states (or transitions)
the system may reach. Unlike concurrent algorithms or protocol descriptions,
on which model checkers are very e�ective, practical SAL models usually do
not contain interleaving concurrency and are more easily amenable to induction
proofs. If a proof fails, Salsa provides a counterexample. Unlike model checkers,
however, the returned counterexample is a state or a state pair and not an execu-
tion sequence. Also, due to the incompleteness of induction, users must validate
a returned counterexample. Salsa has the attributes of both a model checker
and a theorem prover: It is automatic and provides counterexamples just like a
model checker. Like a theorem prover, it uses decision procedures, can handle
in�nite state systems, and can use auxiliary lemmas to complete an analysis.

The design of Salsa was motivated by the need within the SCR Toolset [23]
for more automation during consistency checking [24] and invariant checking [9,
22]. Salsa achieves complete automation of proofs by its reliance on decision
procedures, i.e., algorithms that establish the logical truth or falsity of formu-
lae of decidable sub-theories, such as the fragment of arithmetic involving only
integer linear constraints called Presburger arithmetic. Salsa's invariant checker
consists of a tightly integrated set of decision procedures, each optimized to work
within a particular domain. Currently, Salsa implements decision procedures for
propositional logic, the theory of unordered enumerations, and integer linear
arithmetic.

Although they are capable of checking more general properties (such as live-
ness), in practice model checkers are most often used to check invariant proper-
ties. The advantage of using Salsa over a standard model checker for this task
is that Salsa can handle large (even in�nite state) speci�cations that current
day model checkers cannot analyze. This is due to the use of induction and the
symbolic encoding of expressions involving integers as linear constraints. The
primary disadvantage of Salsa (and proof by induction in general) is its incom-
pleteness { a failed check does not necessarily imply that a formula is not an
invariant because the returned state pair may not be reachable.

After some experimentation, we arrived at the following practical method for
checking state and transition invariants using Salsa (see Figure 1): Initially apply
Salsa. If Salsa returns yes then the property is an invariant of the system, and we
are done. If Salsa returns no, then we examine the counterexample to determine
whether the states corresponding to the counterexample are reachable in the
system. If so, the property is false and we are done. However, if one concludes
after this analysis that the counterexample states are unreachable, then one looks
for stronger invariants to prove the property. Salsa currently includes a facility
that allows users to include such auxiliary lemmas during invariant checking.
There are promising algorithms for automatically deducing such invariants [5, 6,
11, 26], although Salsa currently does not implement them.
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Fig. 1. Process for applying Salsa.

Related Work. The use of SMV [28] and SPIN [25] on software speci�cations for
consistency and invariant checking has been well documented [2, 9, 16, 22]. SCR*
[23] is a toolset that includes a consistency checker which uses a method based
on semantic tableaux extended to handle simple constraints over the integers
and reals. This tool has proved very useful in a number of practical case studies;
however, the tool is unable to complete the checks on certain examples involving
numbers. Systems that largely automate induction proofs by employing decision
procedures include the Stanford Temporal Prover (STeP) [11]. Other tools that
are built upon the interactive theorem prover PVS [30] include TAME (Timed
Automata Modeling Environment) [3] and the tools of Graf et al. [21, 32]. These
tools are implemented as a set of special-purpose PVS strategies. The tool In-
VeSt includes sophisticated algorithms for invariant generation and heuristics for
invariant strengthening [5, 6]. Also, if invariance cannot be established on a �nite
abstraction, an execution sequence is provided as a diagnostic. Validity checkers
such as Mona [18], Mosel [31], and the Stanford Validity Checker (SVC) [4] are
another class of systems that employ decision procedures for proving logical for-
mulae. Although these tools do not directly check invariants, they may be used
to discharge the veri�cation conditions generated during an induction proof in
a tool such as Salsa.

The idea of combining decision procedures for program veri�cation dates
back to the work of Shostak [33] and Nelson and Oppen [29]. The decision pro-
cedures of Salsa for both propositional logic and enumerated types are based on
standard BDD algorithms. The integer constraint solver employs an automata-
theoretic algorithm presented in [12], with extensions to handle negative numbers
using ideas from [34]. Salsa's technique of combining BDD algorithms with con-
straint solvers was largely inspired by the approaches of [14] and [15] where,
by incorporating constraint solvers into BDD-based �xpoint computation algo-
rithms, veri�cation of in�nite state systems becomes a possibility. However, since
the underlying algorithms of these systems are variants of the model checking
algorithm for computing a �xpoint, we speculate that Salsa, due to its use of in-
duction, can handle larger speci�cations than these systems. Also, the constraint
solver of [14] is incomplete for integer linear arithmetic, whereas the one used by
Salsa is complete. The system of [15], which uses an o�-the-shelf backtracking
solver that can be very ine�cient in practice, can handle a class of non-linear
constraints in addition to linear constraints.
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The rest of this paper is organized as follows. In the following section we
introduce the state machines that serve as the underlying models for SAL speci-
�cations and de�ne the invariant checking problem. Section 3 describes the core
algorithms of Salsa, and Section 4 presents the algorithms and heuristics of the
unsatis�ability checker which is used by Salsa to discharge the veri�cation condi-
tions. Section 5 provides some preliminary experimental results of applying Salsa
to several practical speci�cations of moderate size. Finally, Section 6 discusses
ongoing work and future research.

2 Background

2.1 Model for System Behavior

The SCR Abstract Language (SAL), a speci�cation language based on the SCR
Formal Model [24], was designed to serve as an abstract interface to analysis
tools such as theorem provers, model checkers, and consistency checkers. An
example SCR speci�cation in SAL is presented in Appendix A. Unlike concur-
rent algorithms or protocol descriptions, practical SAL speci�cations usually do
not involve interleaving concurrency and are therefore more easily amenable to
induction proofs.

A SAL speci�cation may be translated into a state machine that models a
system's behavior. We now introduce the state machine model for systems and
the supporting machinery used in the paper. We de�ne formulae in a simple
constraint logic (SCL) by the following grammar:

� := C j Xb j :Xb j � _ � j � ^ � (simple formulae)
C := Ci j Ce (constraints)
Ce := Xe = V ale j Xe 6= V ale j Xe = Ye j Xe 6= Ye (enum. constraints)
Ci := SUM � V ali j SUM = V ali j SUM 6= V ali (integer constraints)

SUM := V ali �Xi j SUM+ SUM

where Xb, Xe/Ye, and Xi range over boolean, enumerated, and integer variables
respectively. Similarly V alb; V ale; and V ali respectively range over constants of
the three types. We let V ars(�) denote the free variables in �. Set V ars(�)
is partitioned by the three variable types: V ars(�) = V arsb(�) [ V arse(�) [
V arsi(�). Note that SCL formulae will be interpreted in the context of either 1)
a single state s that maps variable names to values or 2) a pair of states (s; s0),
where s0 is a successor of s. We adopt the convention that primed formulae and
variable names (those ending in 0) are evaluated in the \new state" whereas
unprimed names are evaluated in the \old state." Formulae containing primed
variables are called two-state predicates and those without primed variables are
called one-state predicates.

De�nition 1. A state machine � is a quadruple hV ;S; �; �i where

{ V is a set of variable names. This set is partitioned into monitored variables
which denote environmental quantities the system observes; controlled vari-
ables which denote quantities in the environment that the system controls;
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and internal variables which are updated by the system but not visible to
the environment.

{ S is the set of system states such that each state s 2 S maps each x 2 V
to a value in its set of legal values. We write x(s) to mean the value of
variable x in state s, �1(s) to mean the value of one-state predicate �1

evaluated in s, and �2(s; s
0) to mean the value of two-state predicate �2

evaluated with values from s replacing unprimed variables and values from
s0 replacing primed variables.

{ � is a one-state SCL predicate de�ning the set of initial states.

{ � is a two-state SCL predicate de�ning the transitions (execution steps) of
�. A state s may evolve to a state s0 if �(s; s0) is true.
The transition relation � additionally includes environmental assumptions
as well as assumptions introduced by users. For details, see [10].

2.2 The Invariant Checking Problem

De�nition 2. Given a state machine � = hV ;S; �; �i, a state s 2 S is reachable
(denoted Reachable�(s)) if and only if �(s) or 9s2 2 S : Reachable�(s2)^�(s2; s)

De�nition 3. Given a state machine� = hV ;S; �; �i, a one-state SCL predicate
�1 is a state invariant of � if and only if

8s 2 S : Reachable�(s)) �1(s)

A two-state SCL predicate �2 is a transition invariant of � if and only if

8s; s0 2 S : (Reachable�(s) ^ �(s; s0))) �2(s; s
0)

The invariant checking problem : Given a state machine � and a one(two)-state
predicate �, determine whether � is a state(transition) invariant.

3 The Invariant Checker

Theorem 1. Let � = hV ;S; �; �i, then �1 is a state invariant of � if the follow-
ing hold: 1) 8s 2 S : �(s)) �1(s) and 2) 8s; s0 2 S : �1(s) ^ �(s; s0)) �1(s

0)

Proof: By induction on the number of steps of � to reach a state.

Theorem 2. Let � = hV ;S; �; �i, then �2 is a transition invariant of � if the
following holds:

8s; s0 2 S : �(s; s0)) �2(s; s
0)

Proof: Follows directly from De�nition 3.
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3.1 The Invariant Checking Algorithms

Using Theorems 1 and 2 we check invariants of � = hV ;S; �; �i as follows:

State Invariants. To determine if �1 is a state invariant of �:

0. if :�1 is unsatis�able then return yes.
1. if � ^ :�1 is not unsatis�able then return no and the satisfying state as

counterexample.
2. if �1 ^ � ^ :�0

1 is unsatis�able then return yes.
else return no and the satisfying state pair as counterexample.

Transition Invariants. To determine if �2 is a transition invariant of �:

0. if :�2 is unsatis�able then return yes.
1. if � ^ :�2 is unsatis�able then return yes.

else return no and the satisfying state pair as counterexample.

These algorithms are sound but not complete { whenever Salsa returns yes
the given formula is an invariant; however, a no answer with a counterexample (a
state or a state pair) does not necessarily mean that the formula is not an invari-
ant. Consequently, the user must validate that the counterexample is reachable1.
Either there is a problem or additional theorems are used to \push through" the
invariant. Of course, all added theorems should be proved as invariants by the
user (either with Salsa or by some other means).

3.2 Optimizations

A naive application of the above algorithms to invariant checking will always
fail, even for speci�cations of a moderate size. We perform several optimizations
in Salsa to make invariant checking feasible. One important technique used ex-
tensively is to cache results as they are computed. In addition to the caching
provided by BDD algorithms, we cache the results of calls to the integer con-
straint solver, the BDD encodings of components of the transition relation, etc.

To partition an unsatis�ability check into simpler sub-problems, we use a
technique called disjunctive partitioning which corresponds to a case split in a
standard proof. This approach takes advantage of the fact that a disjunction is
unsatis�able only if each of its disjuncts is unsatis�able. The disjunctive form of
the transition relation in SAL speci�cations has proven to be an e�ective basis
for disjunctive partitioning.

The application of abstraction [9, 22] is also very bene�cial. We restrict our-
selves to applying abstractions that are both sound and complete, by which we
mean the following. Given a property � and a state machine �, an abstraction
�A is a sound and complete abstraction of � relative to � when � is an invariant
of �A if and only if � is an invariant of �. Currently, we apply what is termed
\Abstraction Method 1" [8, 9] that uses the set of variable names occurring in
the predicate � and dataow analysis to eliminate unneeded variables.

1 The single state counterexample returned by step 1 of the algorithm for State Invari-
ants (for a failed check of unsatis�ability of �^:�1) is always a true counterexample.
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4 The Unsatis�ability Checker

4.1 Overview

To discharge the veri�cation conditions that arise during invariant checking,
Salsa uses a routine that decides the unsatis�ability of SCL formulae. Both the
problem of propositional unsatis�ability and the decision problem for integer
linear arithmetic are NP-complete [20], and known algorithms for the latter
problem have super-exponential worst case behavior [19]. The unsatis�ability
checker uses a combination of binary decision diagrams and an integer constraint
solver as a decision procedure for SCL formulae. Using the formula x � 4^x = 7
as an example we outline the algorithm (for speci�cs, see [10]). The initial step
transforms a formula into one containing only logical connectives and boolean
variables. This is done by assigning a fresh boolean variable to each integer
constraint in the original formula. Fresh boolean variables are also introduced
to encode expressions involving variables of enumerated type in the obvious way
[10, 28]. For the example, substituting a for x � 4 and b for x = 7 yields the
formula a ^ b. Next, a BDD for this formula (which encodes the propositional
structure of the original formula) is constructed:

a

False

b

True

The next step brings in the information contained in the integer constraints.
This is done by searching for paths from the root to \True", each path yielding a
set of integer constraints. For the example, the only path from the root to \True"
sets both a and b to true, which yields the set fx � 4; x = 7g. The �nal step
is to determine whether each such set is infeasible (i.e., has no solution) using
an integer constraint solver. If a set is feasible, this information is returned to
the user as a counterexample. For the example, the (single) set of constraints is
infeasible and the formula is unsatis�able. We now describe the integer constraint
solver in detail.

4.2 The Integer Constraint Solver

As an initial step, a set of integer constraints is partitioned into independent
subsets. For example, the set of constraints fx < 4; x > 7; y < 10g may be par-
titioned into fx < 4; x > 7g and fy < 10g.

De�nition 4. Constraints c1 and c2 are independent if V ars(c1)\V ars(c2) = ;.
The partition of a set of constraints CS = fc1; :::; cng into independent subsets
(denoted �(CS)) is de�ned as �(CS) = fCS1; :::; CSmg such that:
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1. �(CS) partitions CS.

2. Constraints in di�erent partitions are independent.

3. For each partition containing more than one constraint, every constraint in
the partition depends on some other constraint in the partition.

To compute �(CS) Salsa uses a union-�nd algorithm that starts with each con-
straint in its own partition and iteratively merges partitions when they contain
dependent constraints.

After partitioning a set of constraints into independent subsets, an integer
constraint solver determines the feasibility of each independent subset. For a set
of constraints, we may conclude that the whole set is infeasible if any independent
subset is infeasible.

Salsa's constraint solver is a decision procedure that determines whether a
set of integer constraints is infeasible, i.e., given fc1; c2; :::; cng the solver checks
whether c1^c2^:::^cn is unsatis�able. Note that the ci are terms from the integer
constraint fragment of SCL (de�ned in Section 2.1). Among several methods
available for solving linear integer constraints, one possible approach is the use
of automata theoretic methods. The idea, which dates back to B�uchi in the
early sixties [13], is to associate with each constraint an automaton accepting
the solutions of the constraint. The feasibility of a set of constraints may then be
computed by constructing a composite automaton (from the constraint automata
for each ci, 1 � i � n) using the standard construction for automata intersection.
Salsa's solver employs the algorithm of Boudet and Comon [12], extended to
handle negative number based on ideas of Wolper [34]. We give an overview of
the algorithm, for details see the above references.

Let us �rst examine how a constraint automaton may encode constraints
over the natural numbers, and then extend this idea to automata for inte-
ger constraints. Let c be a constraint, let V ars(c) = fx1; x2; :::; xng, and let
c[y1=x1; y2=x2; :::; yn=xn] denote the result of substituting yi for each xi in c.
We then de�ne the constraint automaton for c, denoted CAut(c), such that the
language of CAut(c) is f(y1; :::; yn) 2 Intn j c[y1=x1; :::; yn=xn] is trueg. Each
number yi is encoded in base two, so each yi is a string in f0; 1g�. The constraint
automaton will recognize solutions to a constraint by simultaneously reading one
bit for each of its free variables, i.e., the edges of the automaton will be labeled
by elements of f0; 1gn. For example, the satisfying assignments of \x1+x2 = 4"
are f(0; 4); (1; 3); (2; 2); (3; 1); (4; 0)g, so CAut(x1+x2 = 4) encodes this as shown
in Figure 2.

We now explain how to construct a constraint automaton for a constraint c
of the form a1x1 + a2x2 + : : : + anxn = b, where a1; a2; : : : an, b are integer
constants and x1; x2; : : : xn are variables over the natural numbers. The resulting
automaton will be of the form CAut(c) = hS;E; St; Acci where S � Integers is
the set of states and E � S � f0; 1gn � S is the set of edges, St � S is the set
of start states, and Acc � S is the set of accepting states. During construction
we let Snew represent the set of states still to be processed. The construction
proceeds backwards from the accepting state as follows.
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(x1; x2) Accepted string

(0,4)
0 0 0
1 0 0

(1,3)
0 1
1 1

(2,2)
1 0
1 0

(3,1)
1 1
0 1

(4,0)
1 0 0
0 0 0

0
0

0
0

0
0

1
1

1
1

0

1

0

2

4

1

0 1

Fig. 2. The constraint automaton encoding x1 + x2 = 4.

1. Initialize both Snew andAcc to contain only b (the right hand side of the constraint)
and initialize S = E = St = ;.

2. Remove a state s from Snew for processing.
(a) Add s to S. If s = 0 then also add s to St.
(b) For each � 2 f0; 1gn where � = hb1; b2; :::; bni

let � = s� (a1b1 + a2b2 + : : : + anbn) in
if � is even then

� add edge (� div 2)
�
�! s to E

� if (� div 2) =2 (S [ Snew) then add (� div 2) to Snew

3. if Snew = ; then return hS;E; St; Acci else goto 2.

Some simple modi�cations to the above algorithm extend it to handle nega-
tive numbers. For integer constraint c, the states of CAut(c) range over integers
and we add a special state I that will encode the start state, thus S � Int [ I.
Instead of the standard binary encoding employed for natural numbers the two's
complement representation is used for integers. The above algorithm must also
be modi�ed to handle the sign bit of the two's complement notation via a special
encoding for the start state (I) and extra edges from I. We do this by removing
\if s = 0 then also add s to St" from 2(a) and adding the following to 2(b)
above.

if s = (�a1b1 � a2b2 � : : : � anbn)

then add I to S and St and add edge I
�
�! s to E.

The basic algorithm may also be changed to build constraint automata for
constraints involving \6=" and \�". For \6=" the construction is exactly the
same except that Acc = S � b, i.e., the accepting state becomes non-accepting
and all others become accepting. For details of the slightly more complicated
modi�cations for \�" see [10].

The constraint automaton for a set of constraints CS = fc1; c2; :::; cng, de-
noted CAut(CS), is de�ned as CAut(CS) =

Tn

i=1 CAut(ci). The automaton
CAut(CS) is constructed on the y, thereby avoiding the need to build each
CAut(ci). Let Si denote the states of CAut(ci), then the states of CAut(CS)
are SCS � S1 � S2 � : : : � Sn. An unsatis�ability check of CS then proceeds
backwards from the accepting state and terminates with false when the initial
state is reached or terminates with true if the automaton construction completes
without reaching the start state.
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5 Empirical Results

5.1 Motivation

Salsa was designed expressly for the problems of consistency checking and invari-
ant checking SCR requirements speci�cations. More speci�cally, the consistency
checker of the SCR Toolset [23] was unable to carry out certain checks, such
as checks for unwanted nondeterminism called disjointness checks, especially on
speci�cations containing expressions with numbers. We have also been using
SPIN and SMV, and more recently TAME [3], to verify user formulated proper-
ties of SCR speci�cations. We compare Salsa with TAME/PVS to gain an insight
into how well the Salsa approach performs in relation to that of a state-of-the-art
theorem prover.

We compare Salsa with model checkers for the following reason. During the
course of our experiments with SCR speci�cations we have discovered that for
model checking to succeed on these speci�cations requires the application of
abstraction, which currently requires user-direction but is automatable [9, 22].
Further, SPIN and SMV are unable to provide a de�nitive answer for invariant
checks on a number of examples, especially when they contain a large number of
expressions with numbers [27]. Also, since several researchers are currently inves-
tigating the use of SPIN and SMV for invariant checking software speci�cations,
it is our intention to demonstrate that Salsa a�ords a viable, perhaps more auto-
mated and cheaper, alternative to model checking. Whereas mechanical theorem
provers are regarded as being di�cult to use and therefore restricted to sophis-
ticated users, model checking too is often misrepresented as fully automatic or
\push button". Our intention is to demonstrate an approach to invariant check-
ing that avoids both the ad hoc abstraction used in model checking and the
sophistication required to apply mechanical theorem proving.

The speci�cations we use in our experiments were developed using the SCR
Toolset. Since Salsa seems to work well on all of this limited set of examples,
readers may express skepticism about the generality of our results { they may
feel that there must be benchmarks for which the roles would be reversed. By us-
ing induction, abstract encodings for linear constraints, and application-speci�c
heuristics, our experience is that the Salsa approach can in general be more
e�cient than �xpoint computation over a �nite domain, i.e., model checking.
However, Salsa has the disadvantage of not working in all cases, due to the
associated problem of incompleteness.

Test Cases. These include a simpli�ed speci�cation of the control software for a
nuclear power plant [24] (safety-injection), versions of the bomb-release com-
ponent of the ight-control software of an attack aircraft [1] (bomb-release-1

and bomb-release-2), a simpli�ed mode control panel for the Boeing 737 au-
topilot [7] (autopilot), a control system for home heating (home-heating),
an automobile cruise control system (cruise-control), a navy application [27]
(navy), the mode logic for the Operational Flight Program of an attack aircraft
[1] (a7-modes), and a weapons control panel [22] (wcp).
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5.2 Disjointness Checking

To evaluate the performance of Salsa, we checked the above speci�cations for
disjointness errors (unwanted nondeterminism) and compared the results with
the consistency checker of the SCR Toolset. The results of our experiments
are shown in the table of Figure 3. No auxiliary lemmas were used for

any of the checks. The column labeled \number of veri�cation conditions"
indicates how many invariant checks are required to establish disjointness for the
corresponding entire speci�cation. The number of BDD variables is an indicator
of a speci�cation's size, and the number of integer constraints correlates loosely
with the degree to which integers are used in the speci�cation. In these tables,
symbol \1t" means that the corresponding system either ran out of memory or
failed to terminate (over a weekend). The column labeled \number of failed VCs"
shows the number of veri�cation conditions that were not provable. Note: for
the speci�cation a7-modes Salsa reports more failed VCs than the SCR toolset
because certain cases of overlap in table entries are misdiagnosed as disjointness
errors when they should probably be warnings. For speci�cation cruise-control
Salsa establishes disjointness in three cases for which the SCR Toolset cannot.
The tests were conducted on a PC running Linux with a 450 MHz Pentium II
processor and 256 MBytes RAM.

Time (in seconds) Number of
Number of to Check Disjointness Failed VCs

Veri�cation BDD SCR SCR
Speci�cation Conditions Variables Constraints Toolset Salsa Toolset Salsa

Speci�cations containing mostly booleans and enumerated types

safety-injection 13 16 3 0.5 0.2 0 0

bomb-release-1 12 34 9 0.4 0.2 0 0

a7-modes 6171 158 3 145.9 68.9 110 152

Speci�cations containing mostly numerical variables

home-heating 98 112 55 1t 4.8 n.a. 0

cruise-control 123 114 75 21.0 3.6 6 3

navy 397 147 102 390.1 198.2 0 0

bomb-release-2 339 319 230 1t 246.0 n.a. 11

Fig. 3. Results of Disjointness Checks

Figure 3 shows that for speci�cations containing mostly variables of boolean
and enumerated type, both the SCR Toolset and Salsa can complete the analysis
but Salsa is somewhat faster. For speci�cations containing mostly numerical
variables, there were two speci�cations in which Salsa could perform the analysis
but the SCR Toolset could not.
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5.3 Checking Application Properties

To evaluate Salsa's performance on properties formulated by users, we com-
pared the run times with the theorem prover TAME/PVS and the two popular
model checkers SPIN [25] and SMV [28]. (We used SPIN Version 2.9.7 of April
18, 1997, SMV r2.4 of December 16, 1994, and PVS version 2.1 for our exper-
iments.) The results are shown in Figure 4. Note that the PVS proof times do
not include time for type checking, which can be substantial. We ran the ex-
periments on a SPARC Ultra-2 running Solaris with a 296 MHz UltraSparc II
processor and 262 MBytes RAM. All Salsa proofs were completely automatic,
but for property 304 of wcp, which had to be split into two veri�cation condi-
tions for Salsa to complete; the time indicated with an asterisk is the sum of the
running times of the two sub-proofs. All auxiliary lemmas were automat-

ically generated by the algorithm of [26] and proved as invariants by Salsa.
Both SPIN and SMV ran out of memory (or ran inde�nitely) when run on all
examples other than safety-injection. This is probably because they contain a
large number of numerical variables. Dashes (\-") in the SMV column indicate
that we did not run SMV on these examples.

Speci�cation Number of Time (in seconds) Properties Auxiliary
Properties Salsa SPIN SMV TAME/PVS Proved? Lemmas Used?

safety-injection 4 0.8 36.0 155.0 68 Yes Yes

bomb-release-1 2 1.3 1t 1t 30 Yes No

autopilot 2 1.5 1t 1t 82 Yes No

navy 7 396.0 1t - 874 Yes Yes

wcp property 303 295.4 1t - 1t No No

property 304 923.3� 1t - 19 No No

property 305 2.4 1t - 8 No No

Fig. 4. Results of Invariant Checks

6 Conclusions

In this paper, we show that the Salsa approach a�ords a useful alternative to
model checking, especially for the analysis of descriptions of software. Mechan-
ical theorem provers such as PVS are regarded as being too general and too
expensive to use, requiring sophistication on the part of their users. Salsa pro-
vides the advantages of both mechanical theorem proving and model checking
{ it is automatic, easy to use, and provides counterexamples along the lines of
model checkers. The counterexamples, however, are over two adjacent states and
not entire execution sequences. The main advantage of our approach is that we
are able to handle much larger speci�cations, even in�nite state speci�cations,
that current day model checkers cannot handle (without a prior application of
abstraction).
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The major disadvantage of the Salsa approach over conventional model check-
ing is its incompleteness { a proof failure does not imply that the theorem does
not hold. However, this is generally true of model checking too, because an initial
application of model checking to a practical problem rarely succeeds { users of
model checkers routinely apply abstractions (mostly manually and sometimes in
ad-hoc ways) for model checking to proceed [9]. These abstractions are usually
sound, but are often incomplete { consequently, if one model checks an incom-
plete abstraction of a problem, the entire process is incomplete. Model checking,
however, remains very useful for refuting properties, i.e., as a debugging aid.
As with Salsa, the resulting counterexample must be validated against the full
speci�cation.

We plan to extend Salsa to include decision procedures for the rationals, the
congruence closure algorithm to reason about uninterpreted function symbols,
and special-purpose theories such as for arrays and lists. We would also like to
reason about quanti�ers. We have designed Salsa to be general, i.e., to check a
variety of state machine models for invariant properties. We plan on trying out
the tool on state machine models other than SCR.
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A SAL Speci�cation of Safety Injection System

A module is the unit of speci�cation in SAL and comprises variable declarations, as-
sumptions and guarantees, and de�nitions. The assumptions section typically includes
assumptions about the environment and previously proved invariants (lemmas). The re-
quired invariants of a module are speci�ed in the guarantees section. The definitions
section speci�es updates to internal and controlled variables. A one-state de�nition, of
the form var x = rhs1 (where rhs1 is a one-state SAL expression), de�nes the value of
variable x in terms of the values of other variables in the same state. A two-state vari-
able de�nition, of the form var x initially init := rhs2 (where rhs2 is a two-state
SAL expression), requires the initial value of x to equal expression init; the value of x
in the \new" state of each state transition is de�ned in terms of the values of variables
in the \new" state as well as the \old" state. Expression @T(x) WHEN y is syntactic
sugar for :x ^ x0 ^ y and @F(x) denotes @T(NOT x). A conditional expression consists
of a sequence of branches \[] guard ! expression", where the guards are boolean
expressions, bracketed by the keywords \if" and \fi". In a given state, the value of
a guarded expression is equivalent to the expression on the right hand side of the ar-
row whose associated guard is true. If more than one guard is true, the expression is
nondeterministic. A conditional event expression (which is bracketed by the keywords
\ev" and \ve") requires each guard to denote an event, where an event is a two-state
expression that is true in a pair of states only if they di�er in the value of at least one
state variable.

We specify in SAL a simpli�ed version of a control system for safety injection [9].
The system monitors water pressure and injects coolant into the reactor core when the
pressure falls below a threshold. The system operator may override safety injection by
pressing a \Block" button and may reset the system by pressing a \Reset" button.
To specify the requirements of the control system, we use variables WaterPres, Block,
and Reset to denote the monitored quantities and variable SafetyInjection to denote
the controlled quantity. The speci�cation includes a mode class Pressure, an abstract
model of WaterPres, which has three modes: TooLow, Permitted, and High. It also
includes a term Overridden and several conditions and events.
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module sis

functions

Low = 900; Permit = 1000;

monitored variables

Block, Reset : {On, Off};

WaterPres : int in [0,2000];

controlled variables

SafetyInjection : {On, Off};

internal variables

Overridden : bool;

Pressure : {TooLow, Permitted, High};

assumptions

/* Mode invariant generated by the algorithm of Jeffords [26] */

LemmaZ = (Overridden => Reset = Off and not (Pressure = High));

guarantees

/* The following properties are true */

Property1 = (Reset = On and Pressure != High) => not Overridden;

Property2 = (Reset = On and Pressure = TooLow) => SafetyInjection = On;

/* The following properties are false */

Property3 = (Block = Off and Pressure = TooLow) => SafetyInjection = On;

Property4 = (@T(Pressure=TooLow) when Block=Off) => SafetyInjection'=On;

definitions

var Overridden initially false :=

ev

[] @T(Pressure = High) -> false

[] @T(Block = On) when (Reset = Off and Pressure != High) -> true

[] @T(Pressure != High) or

@T(Reset = On) when (Pressure != High) -> false

ve

var Pressure initially TooLow :=

case Pressure

[] TooLow -> ev [] @T(WaterPres >= Low) -> Permitted ve

[] Permitted -> ev [] @T(WaterPres < Low) -> TooLow

[] @T(WaterPres >= Permit) -> High

ve

[] High -> ev [] @T(WaterPres < Permit) -> Permitted ve

esac

var SafetyInjection =

case Pressure

[] High, Permitted -> if [] true -> Off [] false -> On fi

[] TooLow -> if [] Overridden -> Off [] not Overridden -> On fi

esac

end module

Fig. 5. SAL speci�cation of Safety Injection System
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